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ABSTRACT 

Analytic necessary and sut~cient conditions are given for a circle-valued 
function f r o  generate a cocycle which is a multiple of a coboundary. These 
conditions are then used to derive some other new criteria for cocycles to be 
coboundaries. 

1. Introduction 

If G is a group, X is a space on which G acts (on the right by x ~ x .  g), and H 

is another group, we say that R is a Cocycle of this action of G, with 

Coefficients in the group H, i fR is a function from X × G into H satisfying the 

"cocycle identity": R(x ,  gg') = R(x ,  g )R(x ,  g, g'). 

Of particular interest are the cocycles which are coboundaries. A cocycle R is 

a Coboundary if there exists a function fl from X into H such that R(x ,  g) = 

fl(x)[fl(x, g)] - 1. Given a cocycle R, it is virtually impossible in practice to tell 

a priori whether it is a coboundary. It is the purpose of this paper to develop 

some analytic techniques for identifying coboundaries among cocycles. 

Let us take as the group G the group Z of integers, in which case the action of 

G on X is determined by a single transformation z of X. As a primary example, 

one on which we will test all our theorems, let Xbe the half-open interval [0, 1), 

let 0be an irrational number, and define z on Xby z(x) = x + 0 rood 1. Let us 
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take for the coefficient group H the circle group T. A cocycle R for this simple 

case is then a function from X X Z into T satisfying: 

R(x,  n + m) = R(x,  n)R((x + nO), m), 

from which it follows that the entire function R is determined by the single 

function f(x)  = R(x, 1). Indeed, for n > 0, we have 

R(x,  n) = f (x ) f (x  + O)f(x + 2 0 ) . . . f ( x  +(n - 1)0). 

Further, R is a coboundary if and only if there exists a function g : X--* T 

such thatf(x)  = g(x)/g(x + 0), which reduces the relatively abstract questions 

about coboundaries to more concrete questions about circle-valued functions 

on the interval. 

Whether a given function f determines a cocycle which is a coboundary 

remains as a largely unsolved problem even in this simplest case. Veech in [9] 

[10] and [11], Petersen in [7], Stewart in [8], Merrill in [4], and others have 

s tud iedf ' s  which are two-valued step functions on X. Merrill also obtained in 

[4] some corresponding results on general step functions, and in [ 1 ] f ' s  of  the 
form f ix )  = e 2"~sx are treated. 

Section 2 contains the main theorems (2.3, 2.4, and 2.5) analytically 

characterizing coboundaries, the technical cornerstone in the author's opinion 

being Lemma 2.2. Section 3 includes some applications. We prove that the 

function f (x) f (x  + O)f(x + 28). • . f i x  + (k - 1)0) is a multiple o fa  cobound- 
ary for translation by kO if and only if f itself is a multiple of  a coboundary for 

translation by 0, apparently a new result. Finally, we generalize a result of  

Merrill which characterizes multiples of.coboundaries as those funct ionsffor  

whichf(x) / f (x  + t) is a coboundary for all t. 

2. Circle-valued cocycles for a single measure-preserving transformation 

Let X be a space, le t / t  be a probability measure on X, and let r be an 

invertible, ergodic,/t-preserving transformation on X. If f is a measurable 

function from X into the circle T, we say that f is  a circle-valued Coboundary of 

if there exists a measurable g : X ~ T such that 

f ( x )  = g ( x ) / g ( r ( x ) )  

for/ t  almost all x. In this case, we say that f i s  the Coboundary o f  g, and we 

wr i t e f  = dg. I f f a n d f '  are measurable functions from Xinto T, we say tha t f i s  

cohornologous to f '  i f f / f '  is a coboundary. 
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We say that f is a Projective Coboundary if there exists a g : X ~ T and a 

scalar 2 of modulus 1 such that 

f (x)  = 2g(x)/g(z(x)) 

for/ t  almost all x. 

REMARK. The set of  all coboundaries for r forms a group under pointwise 

multiplication, as does the set of all projective coboundaries. 

We let U~ be the unitary operator on L2(X, lt) defined by [U~(g)](x)= 
g(~(x)). 

Given f and r as above, we define U / b y  [Ux(g)](x)=f(x)[U~(g)](x)= 
f(x)g(r(x)). 

2.1. PROPOSITION. The function f is a projective coboundary if  and only if  
the operator U/ has nontrivial discrete spectrum. And, f is a coboundary ((and 
only if  U/has an eigenvalue in common with Us 

PROOF. It follows from ergodicity of  r, and the fact that f f(x)l  = 1, that 

any eigenfunction g, belonging to an eigenvalue 2 for U•, is of constant nonzero 

absolute value, whence it can be taken to have unit modulus. But thenf i s  the 

projective coboundary 2g(x)/g(r(x)). The converse is obvious. 

Assuming f i x ) =  2g(x)/g(r(x)), then if f is a coboundary, the constant 

function 2 is a coboundary for r. But if 2 = h(x)/h(r(x)), then h is an 

eigenfunction for U~ with eigenvalue 1/2. Since the set of  eigenvalues for the 

unitary operator U~ necessarily forms a subgroup of T, it follows that 2 is also 
an eigenvalue for U~. Q.E.D. 

We introduce the following definition, a generalization of  the one given in 

the introduction. 

DEFINITION. Let f :  X----T. For n > 0, define fl,) on X by f(")(x)= 
f (x) f ( r (x) ) . . . f ( r" - ' (x ) ) ,  and s e r f  C°)~- 1. 

2.2. LEMMA. For any measurable f:  X---, T we have 

lim (l /N) f (")(x)d~(x) 
N~oc n =0 

exists, is real, and is nonnegative. 

PROOF. Let fN =(I/N)  ZN=o~f (n). Then fNEL2(It) and [IfN 112 < 1. The 
lemma follows immediately if {fu} tends weakly to 0 in L 2 a s  N tends to oe. 
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Suppose then that h is a nonzero weak cluster point of (f~, }. Then the function 

h o z = h/f .  By ergodicity, h has nonzero constant modulus, and f ( x ) =  
h(x)/h(z(x)). But then 

fcn*(x) = h (x)/h (r"(x)) 
3, '-- 1 

and f x ( x )=h(x ) (1 /N)  Y~ (1/h(rn(x)). 
n=O 

This implies, by the L 2 Ergodic Theorem, that limx_~ fv is the function 

h f (1/h(x))dB(x) in L 2. Therefore, 

lira (l/N) f(n)(x)d~(x) = lira fx(x)d/l(x) 
N ~ x  n ~ 0  N ~ x  

f f = h(x)dp(x) .  (1/h(x))dz(x) = / / I I  h [[2 > O, 

and this completes the proof. 

2.3. THEOREM. Let f :  X - ~ T .  Then f is a projective coboundaty ~f 
there e.x'ists some sequence {an } of  complex numbers of  modulus <= 1 such that 
{(l/N) EN-~,=0 (an f .f~n~(X)dll(x))} does not tend to 0. 

PROOF. Assume the existence of such a sequence {a,}. Then clearly 

lim SUPu~o: (l/N) E~Z0 ~ [ J" f(n)dp(x) > 0. This implies that 

N - |  

lira sup (l /N) Y~ 
N ~ : c  n = 0  

f f~"~(x)&(x) : > 0 .  

For if the former lim sup = e > 0, then there must exist a set S of nonnegative 

integers having positive density for which I f .f~"~(x)dlz(x)] > e for n ~ S .  But 

then, for each n ES,  I f f (")(x)d(x) l  2 > e 2, whence the latter lira sup must be 

positive. 

Now f f ( " ) (x )d#(x )= ((Uf)"(1), 1)= p(n )=  9(n), where p is the positive 
definite function on Z associated to the unitary operator U I and the constant 
function 1, and where v is the probability measure on T whose Fourier 

transform is p. We have 
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N - I  N - - [  

O < l i m s u p  (l /N) ~ I~(n)12--limsup (l/N) Y~ ( v ,~ ) ^ (n )  
N ~ o c  n ~ 0  N ~ o o  n = 0  

(~ being the measure on T defined by 9(E) = v(E)) 

= lim sup (l /N) ~ -"d(v • 9)(o0 
N ~  n = 0  

sup f [(l/N)(1 - o~-")/(1 - ,~ -1)ld(v, 9)(,~). lim 
N ~ o ~  J 

Since this integrand is uniformly bounded in a, and tends to 0 except at the 

point ~ = 1, it must be that { 1 } has positive measure under v • 9.  But 

v* 9({1))= S )~({l}(O/]~)dv(o~)dg(]~)= f V(o/)dv(o~). 

Therefore, the measure v gives positive mass to some point s E T .  It follows 

then from spectral theory that the operator U s has some discrete spectrum. 

Then, by Proposition 2.1, f i s  a projective coboundary as desired. 

REMARK. An obvious corollary to the preceding theorem is that f is a 

projective coboundary if there exists an e > 0 and a set S of positive density 

such that I S f(")l > e for all n E S. 

Another consequence is the following: 

COROLLARY. A measurable f :  X --, T is a projective coboundary i f  and only 
i f  there exists a 2 E T  and a measurable ~u : X --, T such that 

N-l f lim (l/N) Y~ 2" (d~)(")(x)f¢")(x)dl~(x)>O. 
N ~  n •O 

PROOF. If f =  7dg, set 2 = 1/7 and ~, = l/g. Conversely, given 2 and q/, the 
theorem implies that (d~,)fis a projective coboundary, whence so is f .  

Something even more precise can be said when the spectrum of U~ is purely 

discrete. 

2.4. THEOREM. Suppose that the operator U~ has purely discrete spectrum. 

Then the following are equivalent for a measurable function f :  X --, T. 
(i) f is a projective coboundary. 

(ii) For some 2 ~ T  the sequence {(l/N) Y,u=-J (2"S f(")(x)dkt(x))} does not 
tend to O. 
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(iii) For some 2 ET  the sequence ( ( l /N) Z~=70 ~ (2nft"))} does not tend to 0 
in L 2. 

PROOF. Denote an orthonormal set ofeigenfunctions for U, by {Oj }, and let 
2j he the eigenvalue associated to Oj. By ergodicity, we have that lOj(x) l ~ 1. 
Supposef i s  a projective coboundary, sayf(x) = 7g(x)/g(z(x)), and choose a j  
for which f g(x)Oj(x)d/z(x) = cj ~ O. Note also that dj = : (1/gOj) ~ O. Define 
g '=g~j .  Then f i x ) =  y2jg'(x)/g'(r(x)). Let 2 = 1/(y2j). Then 2"ft")(x)= 
g'(x)/g'(z"(x)). So, the sequence {( l /N)Eu£J (2"fl"))} has limit in L 2 the 
function g'(x) f (1/g ' (x))d/z(x)=g'(x)~,  and this is nonzero in L 2. This 
shows that (i) implies (iii). Since fg ' (x)~d/z(x)=cj~,  we also have that 
(i) implies (ii). By Theorem 2.3, (ii) implies (i). Finally, if the sequence 
{(I/N) zU=-0 ~ (2"f~"))} has nonzero limit h in L 2, then as before we see that 
h(z(x)) = h(x)/2f(x), whencef is  a projective coboundary, and (iii) implies (i). 

REMARK. Properties (ii) and (iii) are actually equivalent for any ergodic 
and/z-preserving transformation z. One shows easily that not (iii) implies not 
(ii) and not (ii) implies not (iii). But (i) need not imply (ii) or (iii) when z (U~) 
has some continuous spectrum, e.g., when z is a Bernoulli shift. Indeed, if 
g : X--, T is nonzero and orthogonal to every eigenfunction for U~, and if f is 
defined to be the coboundary of g, i.e., f (x)  = g(x)/g(z(x)), then for any 2 GT 
we have that the limit of the sequence ((l /N)zN£0 ~ (2".f("))} is the limit of 
{(I/N) Z,u=01 (2"g(x)/g(r"(x)))}, which is 0 by the Ergodic Theorem. 

2.5. THEOREM. Suppose U~ has purely discrete spectrum. Then f is a 
coboundary if and only if there exists an eigenvalue )tj of U~ such that the 
sequence {((l/N) Z~,J (2j)"fl"))} has a nonzero L 2 limit h. Furthermore: 

(i) f ( x ) =  l/2j)h(x)/h(z(x)). 
(ii) f h(x)d#(x) > O. 
(iii) f h(x)d/z(x)= IIh IIz~. 

PROOF. If f is a coboundary, then the proof  of (i) implies (iii) in the 
preceding theorem shows the existence of the required eigenvalue 2j. Conver- 
sely, i f ( (1/N) u- i  Z~ =0 ((2j)~ft~l)} has a nonzero L 2 limit h, then the proof  of (iii) 
implies (i) in the preceding theorem shows that f (x)  = (l/2j)h (x)/h(r(x)). But 
1/2j is also an eigenvalue of U~, whence the constant function 1/2j is the 
coboundary of the corresponding eigenfunction 0j. Hence f i s  the product of 
two coboundaries and is therefore a coboundary itself. 

Now, i fh  is the limit of {(l/N) Y,~-0 ~ ((2j)~f¢~))}, and i fh  ~ 0, then we have 
seen in the proof of Lemma 2.2 that this limit is 
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h(x) . . f  (1/h) = h(x) f h(x)d~(x)/ II h I1~, 

whence y h = y h(x)d#(x)[y fi(x)d~(x)/II h I1~1 = I f h L2/II h IlL which shows 
that f h = II h IlL. Properties (ii) and (iii) follow from this observation, and the 
proof is complete. 

We equip the set M of all measurable functions from X into T with the 

Polish topology of convergence in/t-measure. 

2.6. THEOREM. The set P of all projective coboundaries is a Borel subset of  
M, and there exists a Borel map (cross-section) C from P into M X T such that i f  
C(f)  = (g, 2), then f =  (1/2)dg. 

PROOF. The map (g, ; t ) ~ 2 d g  is a continuous homomorphism of M × T 

into M. The kernel K of this homomorphism is the set of  all (g, 2) for which 
2dg = 1, i.e., g(r(x)) = 2g(x) a.e. For (g, 2) to belong to K, it is necessary and 

sufficient that g be a multiple of some eigenfunction 0j for U~ and 2 must be the 
corresponding eigenvalue 2j. So, K is the set of all pairs (zOj, 2j), for z ET. 

Hence, since the set of  eigenfunctions for U~ is in any case an orthonormal set 

in L z, K is closed in M X T, and the Polish group (M X T)/K maps conti- 

nuously and 1-1 onto the subset P of the Polish group M. Hence, by the 

isomorphism theorem (see [3]), the set P is a Borel set in M, and the inverse 
map of P onto (M X T)/K is a Borel map. Composing this inverse with a Borel 
cross-section of (M × T)/K into M X T ([6]) gives the desired map C. 

COROLLARY. The set P0 of all coboundaries is a Borel subset of M, and 
there exists a Borel map Co of  Po into M such that if  Co(f) = g, then f =  dg. 

The proof is completely analagous to the one above. We use this corollary in 
the proof of Theorem 3.2 below. 

REMARK. The proofs break down if r is not measure-preserving. For then 
the eigenfunctions may not form an orthonormal set (or even be square- 
integrable), and the subgroup K may not be closed in M. 

3. Applications 

If f is a projective coboundary for r, then f ix)f ir(x))  is a projective 
coboundary for r 2 whether r '  is ergodic or not (and it can be either way). That 

the converse is true even when r 2 is ergodic is not quite so obvious, though it 

can be shown directly. For exponents k larger than 2, we know of no 
elementary proof for the following: 
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3.1. THEOREM. Assume k is a positive integer for which r k is ergodic. Then, 
a measurable function f :  X ---, T is a projective coboundaryfor "c i f  and only i f f  (~) 
is a projective coboundary for r k. 

PROOF. If f is a projective coboundary for r, sayf(x)  = 2g(x)/g(r(x)), then 
ftk)(x) = ~.kg(x)/g(zk(x)), and so is a projective coboundary for z k. 

Conversely, suppose that ftk) is a projective coboundary for z k. It will suffice 

to show that there exists a function ~:  X-- -T such that (dv/)fis a projective 

coboundary for z. By assumption, there exists a r/ and a 2 E T such that 

f(~)(x) = 2 q ( X ) / ~ l ( r k ( x ) ) .  Set ~u = l/r/. Define am to be 0 unless m is a multiple 

of  k, and set a,k = 1/2 ". Then: 

,,l f lim ( l /N)  Y~ a,, ((dqi)f)(m)(x)d#(x) 
N~ac  m = 0  

f = l i m  (1/Nk) Y, a,, ((dv)f)t")(x)dlz(x) 
N ~ o c  m ~ 0  

= lim (1/Nk) ~ (1/2") (d~)t"~)(x)2"(r//r/ozk)(")(x)dlt(x) 
N~co  n = 0  

= 1 / k  > 0.  

So, by Theorem 2.3, (d~,)fis a projective coboundary, as desired. 

As an example of this theorem, take X to be the interval [0, 1) and z to be 

translation mod 1 by an irrational number 0. Take k to be 3. The theorem 

above asserts that if f :  [0, 1) --, T is measurable and satisfies 

f ( x ) f ( x  + O) f ( x  + 2~0) = 2g(x)/g(x + 30), 

then f m u s t  satisfy f (x)  = 2'h(x)/h (x + 0). We do not know of an elementary 
proof  of  this. 

Next, we study how a function's being a projective coboundary is related to 

its being cohomologous to translates of  itself. The theorem below is a generali- 

zation of an unpublished result due to K. Merrill. 

3.2. THEOREM. Let F be a locally compact group of  #-preserving transfor- 
mations of  X,  let H be a closed co-compact subgroup of  F for which X is 
homeomorphic to the coset space F/H, and assume that for each x E X there 
exists a measurable map Cx of X into F such that the transformation y 
[cx(y)](x) is ~t-preserving. Suppose finally that z commutes with each ~, ~F .  Let 
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f :  X---" T. Then f satisfies f (x) /  f(~,(x)) is a multiplicative coboundary for each 
y ~ F if  and only i f f i s  a projective coboundary. 

PROOF. We normalize Haar measure on F and H so that f r f (y)dy  = 
fx  fn f(?h)dhdlt (yH). By the corollary to Theorem 2.6, there exists a Borel map 

~, ---- gy of F into M satisfying g~(x)/gy(~(x)) = f(x)/f(~(x)) a.e./~. Again letting 

(~j } denote a countable dense subset of M, it follows, from the corollary to 
Theorem 2.3, that there exists an integerj and a set S of positive Haar measure 

in F for which 

lim (l/N) (d~)(")(x)(f/ f o y)("~(x)dlt(x) > 0 
N ~ o o  n ~ 0  

for every y E S. 

It follows then from Fubini's Theorem and Lemma 2.2 that there exists an 

x ~ X such that 

N-l f i  
lim (l /N) ~, (d%)(")(x)f(")(x) (1/foT)(")(x)d~ 

N ~ c c  n = 0  

N ,  f i  
= lim (l /N) Y~ a. f(")(?(x))d~, > O, 

N ~ o c  n = 0  

since r commutes with each y and where a, = (d~ufl(")(x)f(')(x). So, 

0 < l i m  (l /N) Y~ a, f(")(y(h(x)))dhdp(~H). 
N ~ o o  n ~ 0  

Hence, there exists an h U H such that 

N I 
O < l i m  (l /N) Y~ a. f(")(ch(~)(y)(h(x)))dlt(y) 

N ~ c ~  n = 0  

f(")(y)du(y), = l im ( l / N )  Y~ a. 
N ~ o c  n ~ 0  

which implies, by Theorem 2.3, that f a n d  hence also f i s  a multiplicative 

projective coboundary. Q.E.D. 

COROLLARY. Suppose X is a compact abelian group, # is Haar measure on 
X,  a is an element of X for which the cyclic subgroup Za is dense in X, and r is 
the transformation on X given by r(x) = xa. For f :  X ~ T, we have that f is a 
projective coboundary i f  and only i f  f is cohomologous to each of  its translates 
fotr ,  where f o tr(x) = flax),  for tr ~ X. 
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PROOF. We remark that z is /z-ergodic  and/z-preserving,  and that it is 

sufficient to define cx(Y) = y x -  1. 
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